

²⁰²⁴ Análisis de firmwares

Antonio Vázquez Blanco

Research Engineer @ Tarlogic Security

- antonio.vazquez@tarlogic.com
- @antoniovazquezblanco@mastodon.social
- X @antonvblanco

REQUISITOS DEL TALLER

- > Tener instaladas las siguientes herramientas:
 - Preferentemente una distribución Linux (o bien nativa o en una máquina virtual) con los comandos:
 - cat, cut, dd, xxd, md5sum, dd, unsquashfs (opcional)
 - > Binwalk (con los paquetes de Python capstone y matplotlib)
 - > Un editor hexadecimal (se recomienda ImHex)

- > El taller consistirá en un ejercicio
- > Este ejercicio está elaborado y basado en ejercicios reales
- Queremos obtener el firmware de un router y analizarlo para identificar vulnerabilidades o extraer secretos
- Buscamos en la página web del fabricante y no está disponible para ser descargado...
- ¡Tenemos una unidad física nosotros!

- > Abrimos el dispositivo...
- Miramos la serigrafía de los chips....
 FLASH
- Identificamos los componentes...
- Buscamos conexiones de periféricos del controlador...

- Opción 1: Usamos una pinza y un lector SPI para extraer los contenidos de la memoria...
- Surge un problema cuando la pinza alimenta la memoria para leerla, el procesador arranca y no permite que nosotros hagamos la lectura...

https://github.com/therealdreg/hardware_hacking_es#hacking-flash-spi-winbond-25q64fvsig

- Opción 2: Desoldamos la memoria y con un lector SPI extraemos los contenidos de la memoria...
- Requiere desoldar y soldarla de nuevo en su sitio, antes de modificar el hardware vamos a probar otras cosas...

- Opción 3: Nos conectamos a la UART, analizamos si es posible interactuar con el bootloader o una shell e intentamos extraer los contenidos por aquí...
- Si dejamos que el router arranque del todo nos pide un login y no tenemos las credenciales...
- > Antes de llegar a arrancar totalmente, aparece el texto:

Press reset button to boot command mode. Press any key in 1 secs to enter boot command mode.

Si pulsamos cualquier tecla, nos lleva al bootloader!

Análisis de firmware | Pwn3dcon

CONTEXTO

Press reset button to boot command mode. Press any key in 1 secs to enter boot command mode. bldr> help Print out help messages. help go decomp memrl <addr> memwl <addr> <value> dump <addr> <len> Dump memory content. jump <addr> Jump to addr. flash <dst> <src> <len> flashrd <addr> <len> xmdm <addr> <len> miir <phyaddr> <reg> miiw <phyaddr> <reg> <value> gpioon <gpio> gpiooff <gpio> Start Web Server httpd ddrdrv <..> bldr>

Print out help messages. Booting the linux kernel. Decompress kernel image to ram. Read a word from addr. Write a word to addr. Write to flash from src to dst. Read flash from addr. Xmodem receive to addr. Read ethernet phy reg. Write ethernet phy reg. Trigger power, internet, adsl led on. Trigger power, internet, adsl led off. Change DDR driving length

. . .

Podemos usar el comando flashrd para extraer el contenido de la memoria en texto...

bldr> flashrd 0 16777216																		
Read 167772	216	5 by	/te	dat	a f	Fron	n 0											
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F	0123456789ABCDEF
0x00000000		0 B	F0	00	Ø A	00	00	00	00	00	00	00	00	00	00	00	00	•••••
0x00000010		00	00	13	20	00	00	27	80	00	00	27	80	00	00	DF	45	'□'□E
0x00000020		00	00	00	00	00	00	00	00	40	80	90	00	40	80	98	00	@□@□
0x00000030	I	40	1A	60	00	24	1B	FF	E6	03	5B	D0	24	40	9A	60	00	@.`.\$[.\$@.`.

(in)

- Ahora que hemos realizado un dump de la memoria (también valdría para un firmware descargado de una web de fabricante)...
- Tenemos un solo fichero con los contenidos de toda la memoria flash/todo el firmware...
- > ¿Qué hacemos?

- Ahora que hemos realizado un dump de la memoria (también valdría para un firmware descargado de una web de fabricante)...
- Tenemos un solo fichero con los contenidos de toda la memoria flash/todo el firmware...
- > ¿Qué hacemos?
 - > Binwalk? :D

> Identificación del formato del fichero proporcionado

EJERCICIO 1

- > Identificación del formato del fichero proporcionado
- % binwalk firmware_1

DECIMAL HEXADECIMAL DESCRIPTION

31064127 0x1DA003F CFE boot loader

32101704 0x1E9D548 Sega MegaDrive/Genesis raw ROM dump, Name: "5 17 19 08 62 1", "01 73 29 65 71 5",

35895853 Øx223BA2D StuffIt Deluxe Segment (data): f.hT.

EJERCICIO 1

- > Identificación del formato del fichero proporcionado
- % binwalk firmware_1
- DECIMAL HEXADECIMAL DESCRIPTION

- 31064127 0x1DA003F CFE boot loader
- 32101704 0x1E9D548 Sega MegaDrive/Genesis raw ROM dump, Name: "5 17 19 08 62 1", "01 73 29 65 71 5",
- 35895853 0x223BA2D StuffIt Deluxe Segment (data): f.hT.

Las herramientas son herramientas, debemos usarlas con cautela y adecuación...

- Hemos realizado un dump de una memoria o hemos descargado un firmware de la página de un fabricante...
- Tenemos un solo fichero con los contenidos de toda la memoria flash/todo el firmware...
- > ¿Qué hacemos?
 - > Investigar cuales son los formatos más comunes de dumps...

FORMATOS DE DUMP: INTEL HEX

- > Es formato texto. Se puede abrir con un editor de texto!
- > Todas las líneas comienzan por ":"
- Típico en microcontroladores como PIC, AVR, algunos chips de ARM como los nRF (Nordic Semiconductor), algunas EEPROMs...

FORMATOS DE DUMP: INTEL HEX

https://es.wikipedia.org/wiki/HEX_(Intel)

:10010000214601360121470136007EFE09D2190140 :100110002146017EB7C20001FF5F16002148011988 :10012000194E79234623965778239EDA3F01B2CAA7 :100130003F0156702B5E712B722B732146013421C7 :00000001FF

Código de inicio

Longitud

Dirección

Tipo de registro

Datos

Checksum

FORMATOS DE DUMP: HEXDUMP

- > Es formato texto. Se puede abrir con un editor de texto!
- > Pueden variar las columnas dependiendo de la herramienta...
- Si existe una columna con direcciones, normalmente serán consecutivas pero <u>pueden no serlo</u>!!
- Siempre encontraremos la sección principal con los datos en formato hexadecimal
- NUNCA usar la columna de texto para convertir a formato binario! Pérdida de información!
- > Típico en volcados desde un bootloader a través de una UART...

FORMATOS DE DUMP: HEXDUMP

https://en.wikipedia.org/wiki/Hex_dump

00000000	30 31 32	33 34 35 36 37	38 39 41 42 43 44 45 46	0123456789ABCDEF
00000010	0a 2f 2a	20 2a 2a 2a 2a	2a 2a 2a 2a 2a 2a 2a 2a	./* *********
00000020	2a 2a 2a 2	2a 2a 2a 2a 2a	2a 2a 2a 2a 2a 2a 2a 2a	*****
00000030	2a 2a 2a 3	2a 2a 2a 2a 2a	2a 2a 2a 2a 2a 2a 2a 2a	*****
00000040	2a 2a 20	2a 2f 0a 09 54	61 62 6c 65 20 77 69 74	** */Table wit
00000050	68 20 54	41 42 73 20 28	30 39 29 0a 09 31 09 09	h TABs (09)1
00000060	32 09 09	33 0a 09 33 2e	31 34 09 36 2e 32 38 09	233.14.6.28.
00000070	39 2e 34	32 0a		9.42.
00000075				

FORMATOS DE DUMP: BINARIO RAW

- > No tiene porque ser un archivo de texto!
- > Debemos usar un editor hexadecimal
- > Si se trata como texto podemos perder información!
- > No vamos a ver una estructura definida, dependerá del contenido...
- Es el formato más común, formato por defecto de muchas herramientas de volcado de memorias
- Es el formato común esperado por muchas herramientas de análisis como Binwalk!

FORMATOS DE DUMP: BINARIO RAW

FORMATOS DE DUMP: BINARIO RAW

01	File	Edi	t	Vie	w	La	youl	t	Extr	`as	He	lp	Im	Hex	-	fot	o1.	јрд	6	9	—		×
5		ß	Ð							fo	to1	.jp	q										
Hev	edito											- 1											×
TICX.	curco																						~
Addr	ress	00	01	02	03	04	05	06	07	08	09	ΘA	0B	0C	0D	0E	0F	ASCII					
0000	90000:	FF	D8	FF	E0	00	10	4A	46	49	46	00	01	01	01	00	60	`JFIF`					
0000	90010:	00	60	00	00	FF	E1	2D	EΑ	45	78	69	66	00	00	4D	4D	`ExifMM					
0000	90020:	00	2A	00	00	00	08	00	06	00	0B	00	02	00	00	00	26	. * 8					
0000	90030:	00	00	08	62	01	12	00	03	00	00	00	01	00	01	00	00	Ь					
0000	30040:	01	31	00	02	00	00	00	26	00	00	08	88	01	32	00	02	. 1 & 2					
0000	30050:	00	00	00	14	00	00	08	AE	87	69	00	04	00	00	00	01	i					
0000	30060:	00	00	08	C2	EA	10	00	07	00	00	08	0C	00	00	00	56	<u>_</u> V					
0000	30070:	00	00	11	46	10	EA	00	00	00	08	00	00	00	00	00	00	F					
0000	90080:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	30090:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
	JUUAU:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
	900B0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
	900C0: 200D0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
	900D0; 900E0;	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	300E0;	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	30010.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	30100. 30110.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	0120:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	10130:	NN	ññ	ŇŇ	ŇŇ	ŇŇ	ññ	ññ	ññ	ññ	ññ	ññ	ññ	ññ	ññ	ññ	ññ						
0000	00140:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	00150:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	00160:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	90170:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000	90180:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
Page	e:			0:	×01	7.0	9×01	L							Re	gio	n: 0)×00000000 - 0×000	19C6D	(0 - 10)5581	.)	
Sele	ection	: No	ne												Da	ta :	Size	e: 0x00019C6E (0x:	.9C6E	103.11	. kiE	3)	
Aa		abc	I	#											Da	ta '	visu	ualizer: Lit	Hexade	cimal		16	

www.pwnedcon.com

> Identificación del formato del fichero proporcionado. Otra vez...:)

FIRMWARE 1: EJERCICIO 2

> Identificación del formato del fichero proporcionado. Otra vez...

```
% cat firmware_1 | less
```

 00000000
 8b
 01
 00
 00
 cc
 78
 0d
 00
 01
 01
 00
 70
 01
 00

 00000010
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 01
 01
 00
 70
 01
 00

 00000020
 02
 01
 00
 67
 02
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

xp.p
• • • • • • • • • • • • • • •
g[h

•••

FIRMWARE 1: EJERCICIO 2

- > Identificación del formato del fichero proporcionado. Otra vez...
 - > Es un fichero de texto!
 - Las líneas no comienzan por ":"
 - Hay una columna que parecen direcciones y un cuerpo principal en hexadecimal

FIRMWARE 1: EJERCICIO 2

- > Identificación del formato del fichero proporcionado. Otra vez...
 - > Es un fichero de texto!
 - Las líneas no comienzan por ":"
 - Hay una columna que parecen direcciones y un cuerpo principal en hexadecimal
 - Es un Hexdump! Binwalk esperaba un binario raw!

CONCLUSIONES

- Casi todas las herramientas de análisis que vamos a usar trabajan con el formato binario
- Si nuestro dump está en formato hexadecimal o Intel HEX habrá que transformarlo

> Las herramientas son herramientas y bien usadas nos hacen felices...

INTEL HEX > BINARIO RAW

- > Existen infinidad de herramientas:
 - SRrecord: <u>https://github.com/sierrafoxtrot/srecord</u> ⊞
 - srec_cat inputFile.hex -Intel -output outputFile.bin binary

 - binex.exe /B inputFile.hex
 - > HEX2BIN: <u>https://www.keil.com/download/docs/7.asp</u>

hex2bin inputFile.hex outputFile.bin

HEXDUMP > BINARIO RAW

- Lo más común es xxd, en muchos sitios se recomienda este comando pero ESTÁ MAL:
 - xxd -r -p inputHexdump.txt outputBinary.bin
- xxd puede no llevarse bien con los números de las direcciones, es importante quitar la columna de las direcciones:

cut -d' ' -f3-19 inputHexdump.txt | xxd -r -p >
outputBinary.bin

> Ojo porque puede haber saltos de dirección en el dump!

> Convertir el fichero a binario e identificarlo

% cut -d' ' -f3-19 firmware_1 | xxd -r -p > firmware_1.bin

% md5sum firmware_1.bin
c2ca9f8a3c011c87007a34c567311aea firmware_1.bin

EJERCICIO 3

Converti % binwalk firm DECIMAL	r el fichero a l ware_1.bin le HEXADECIMAL	binario e identificarlo ess DESCRIPTION
139553 sequence lengt	0x22121 h: 832	Certificate in DER format (x509 v3), header length: 4,
… 731273 874485 flash size: 1M	ØxB2889 ØxD57F5 B, entry addres	LZO compressed data ESP Image (ESP32): segment count: 11, flash mode: QUIO, ss: 0xb8000000
 2120508 6292304 6293502 6294527 extract	0x205B3C 0x600350 0x6007FE 0x600BFF	xz compressed data LZ4 compressed data LZ4 compressed data Zip multi-volume archive data, at least PKZIP v2.50 to

> Aun usando las herramientas con cuidado...

- > Tenemos solo una estrategia de búsqueda en binarios
- > Es deseable tener al menos un plan B...

HERRAMIENTAS PARA BINARIOS

> Búsqueda de firmas:

- Binwalk <u>https://github.com/OSPG/binwalk</u>
- Unblob <u>https://github.com/onekey-sec/unblob</u>
- Estadísticos: Entropía Con Binwalk/ImHex
- Editor hex: ImHex <u>https://github.com/WerWolv/ImHex</u>

HERRAMIENTAS PARA BINARIOS: BÚSQUEDA DE FIRMAS

- > ¿Que es una firma/magic number?
 - Algunos formatos de archivo usan un "magic number" para identificar su inicio
 - > Es una constante que no debería variar
 - Cuidado: Algunos fabricantes cambian las firmas de sus archivos porque los customizan o para no ser detectados

HERRAMIENTAS PARA BINARIOS: BÚSQUEDA DE FIRMAS

- > file (Utilidad de linux)
- > Binwalk

binwalk fichero.bin (Solo busca firmas)

```
binwalk -e fichero.bin (Extrae)
```

> Unblob

unblob fichero.bin (Extrae)

> ¿Qué es la entropía?

w.

- > Es una medida de "densidad" de información
- > La entropía será máxima cuando haya una buena compresión
- > La entropía será alta con el cifrado
- > La entropía será media cuando haya formatos estructurados
- > La entropía es mínima en regiones vacías

> ¿Qué entropía tiene el siguiente fichero?

Address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	- 2000
000000000:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000020:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	accession a second contra-
00000030:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000040:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000050:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000060:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000070:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000080:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000090:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000A0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000B0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000C0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000D0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000E0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000F0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

> ¿Este tendrá más o menos?

Address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	
000000000:	00	00	.00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000020:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000030:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	30101010101010101010101010
00000040:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000050:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000060:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000070:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000080:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
00000090:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000A0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000B0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000000:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000D0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000E0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000000F0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	

- > ¿Este tendrá más o menos?
- > ¿Es aleatorio o predecible?

Address	00	01	02	03	04	05	06	07	08	09	ΘA	0B	0C	0D	0E	ΘF	
000000000:	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	
00000010:	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	
00000020:	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	!"#\$%&'()*+,/
00000030:	30	31	32	33	34	35	36	37	38	39	ЗA	ЗB	ЗC	ЗD	ЗE	ЗF	0123456789:;<=>?
00000040:	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	@ABCDEFGHIJKLMN0
00000050:	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	PQRSTUWXYZ[\]^_
00000060:	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	`abcdefghijklmno
00000070:	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F	pqrstuvwxyz{ }~.
00000080:	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	
00000090:	90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F	
000000A0:	AO	A1	A2	A3	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF	
000000B0:	B0	B1	B2	В3	Β4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF	
000000C0:	CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF	
000000D0:	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF	
000000E0:	ΕO	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF	
000000F0:	FO	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF	

> ImHex:

View > Data information > Analyze

> Binwalk:

binwalk -E fichero.bin

Cyberchef: <u>https://gchq.github.io/CyberChef/</u>

Open file > Add recipe > Entropy

HERRAMIENTAS PARA BINARIOS: EDITOR HEX

- > Es la herramienta más poderosa
- > Es posiblemente la que más esfuerzo y tiempo requiere
- Útil para afinar los pequeños detalles de los datos que extraemos de las otras herramientas...

HERRAMIENTAS PARA BINARIOS: EDITOR HEX

- ➤ ImHex <u>https://github.com/WerWolv/ImHex</u> ♥
- Hobbits <u>https://github.com/Mahlet-Inc/hobbits</u>
- > 101 Hex Editor https://www.sweetscape.com/010editor/
- HxD <u>https://mh-nexus.de/en/hxd/</u>
- > Okteta https://apps.kde.org/es/okteta/
- Vix <u>https://github.com/batchDrake/vix</u>

Identificar el firmware. Una vez más...
 ¿Qué estrategia podemos usar?

www.pwnedcon.com

- Identificar el firmware. Una vez más...
 Apálicio do optropía del firmware.
 - Análisis de entropía del firmware

Análisis de entropía del firmware >

> Análisis de entropía del firmware

Análisis de entropía del firmware >

¿CÓMO ESTÁ ORGANIZADA UNA FLASH?

- > Depende de la complejidad del dispositivo
 - > Micros pequeños solo tendrán una sección
 - > Dispositivos más complejos tendrán varias secciones
- ¿Cómo organizada nuestra flash?

¿CÓMO ESTÁ ORGANIZADA UNA FLASH?

w.

- > Depende de la complejidad del dispositivo
 - > Micros pequeños solo tendrán una sección
 - > Dispositivos más complejos tendrán varias secciones
- ¿Cómo organizada nuestra flash?
 - Particiones o secciones
 - > Separadas por espacios en blanco

¿CÓMO PARTIMOS UN BINARIO?

- > Hay editores hex que lo permiten
- > Utilidades clásicas como dd

dd if=input.bin of=output.bin bs=1 skip=\$offset count=\$size

> Ojo, dd no entiende los números en hexadecimal!

dd if=input.bin of=output.bin bs=1 skip=\$((0x100))
count=\$((0xa00))

- > Vamos a partir nuestro firmware en las distintas secciones!
 - > Queremos que el fichero de salida tenga el inicio bien alineado.
 - > El final del fichero de salida no tiene porque estar perfectamente alineado, podemos incluir espacio en blanco...

dd if=input.bin of=output.bin bs=1 skip=\$((0x100))
count=\$((0xa00))

Vamos a partir nuestro firmware en las distintas secciones!

% dd if=firmare_1.bin of=part_1.bin bs=1 skip=\$((0x000000))
count=\$((0x200000))

% dd if=firmare_1.bin of=part_2.bin bs=1 skip=\$((0x200000))
count=\$((0x400000))

% dd if=firmare_1.bin of=part_3.bin bs=1 skip=\$((0x600000))
count=\$((0x200000))

% dd if=firmare_1.bin of=part_4.bin bs=1 skip=\$((0x800000))
count=\$((0xc00000))

> Vamos a partir nuestro firmware en las distintas secciones!

% md5sum *

01f13d25e24ed64f60999c5aa9af5d39 firmware_1

0e73b9cf5098e5c8b6266a85ce3b4c17 firmware_1.bin

54d63b8457097e38d2e4e7bb0d8ff218 part_1.bin

82cb9c087aa2c112ceaa67c2f2765702 part_2.bin

26221f07d78a60ab78953811ce308bea part_3.bin

b219ad14b1ac91695f91f5baefde90eb part_4.bin

¿CÓMO ESTÁ ORGANIZADA UNA FLASH?

- Con la entropía y búsqueda de regiones en blanco identificamos particiones/secciones de la flash
- Con la entropía y búsqueda de firmas identificamos que particiones/secciones están comprimidas, cifradas u otros formatos
- Podemos entender parte del formato, pero ¿Por qué esto está organizado de esta manera?

ENTENDIENDO EL DISEÑO DE UN DISPOSITIVO

- > Se busca un coste reducido y ajustado (esto da más beneficio al fabricante)
- En parte se logra a través de la "modularidad": elijo una CPU y la combino con una RAM y una flash
- Esto genera complejidad en el software porque este tiene que adaptarse a esa modularidad!

Initial Program Loader o Rom Boot Loader

- > Muy limitado en tamaño, solo puede usar una SRAM mínima.
- > Suele ser parte del SoC y usa recursos dentro del SoC.
- Inicializa mínimamente un medio de almacenamiento y copia el SPL a la SRAM.

Secondary Program Loader o Memory Loader (MLO) o 1st Stage Loader

- > Desde la SRAM inicializa la DDR de más tamaño.
- > Casi siempre reconfigura el almacenamiento de arranque.
- > Posiblemente configura algunos periféricos (UART para debug).
- > Carga el 2nd stage de mucho mayor tamaño en la DDR.

Bootloader

- > Habitualmente llamamos bootloader al 1st stage + 2nd stage juntos.
- > Los más típicos son U-Boot/CFE/Grub...
- Inicialización más completa del hardware. Puede tener mucha funcionalidad: Línea de comandos, boot de red, soporte para distintos almacenamientos...

- e memoria, gestión de procesos, permisos, ab
- Gestión de memoria, gestión de procesos, permisos, abstracción del hardware...
- > Lo más común es una versión modificada de un Kernel obsoleto.
- Por motivos de licenciamiento el código propietario suele proveerse en módulos sin código fuente.

> Herramientas, servicios, configuraciones...

¿CÓMO ESTÁ ORGANIZADA UNA FLASH?

> Particiones/secciones más comunes

- > Bootloader
- > Kernel
- Sistema de archivos principal (userspace)
- > Otras particiones "custom" para traducciones, configuración u otros

- > Identificar cada una de las particiones!
 - Ahora podemos usar la detección de firmas en cada una de las partes con el conocimiento que acabamos de adquirir.

> Identificar cada una de las particiones!

- > part_1: ??
- > part_2: ??
- > part_3: wtf???
- > part_4: squashfs Sistema de archivos comprimido, será el userspace!

- > Identificar cada una de las particiones!
 - > part_1: ??
 - part_2: zImage Es un kernel comprimido! ARM!
 - > part_3: wtf???
 - part_4: squashfs userspace

- > Identificar cada una de las particiones!
 - part_1: bootloader! Tiene instrucciones de ARM!
 - part_2: zImage kernel
 - > part_3: wtf???
 - part_4: squashfs userspace

- > Identificar cada una de las particiones!
 - > part_1: bootloader
 - part_2: zImage kernel
 - > part_3: custom? Partición para despistar!
 - part_4: squashfs userspace

> Identificar cada una de las particiones!

% binwalk -Y par DECIMAL	t_1.bin HEXADECIMAL	DESCRIPTION									
0	0x0	ARM executable code, 32-bit, little endian, at least 720 valid instructions									
% binwalk part_2 DECIMAL	.bin HEXADECIMAL	DESCRIPTION									
0	0x0	Linux kernel ARM boot executable zImage (little-endian)									
 2058728	0x1F69E8	Flattened device tree, size: 18269 bytes, version: 17									
% binwalk part_4 DECIMAL	.bin HEXADECIMAL	DESCRIPTION									
0 11189691 bytes,	0x0 1711 inodes, bloc	Squashfs filesystem, little endian, version 4.0, compression:gzip, size: ksize: 131072 bytes, created: 2024-03-02 17:13:55									

in
¿QUÉ PODEMOS HACER AHORA?

- > El análisis de un firmware completo puede requerir mucho tiempo...
- La estrategia es priorizar para poder obtener resultados con menor esfuerzo...
- > Podemos empezar por lo más fácil!

- > Extraer el sistema de archivos a una carpeta
 - > Binwalk
 - Squashfs (unsquashfs)

> Extraer el sistema de archivos a una carpeta

% unsquashfs part_4.bin
Parallel unsquashfs: Using 2 processors
1628 inodes (1343 blocks) to write

create_inode: failed to create symlink squashfs-root/bin/ash, because Operation not permitted create_inode: failed to create symlink squashfs-root/bin/cat, because Operation not permitted

¿QUÉ PODEMOS HACER AHORA?

- Firmware custom! Modificar el userspace, modificar o incluir algún fichero nuesto, reempaquetar y volver a flashear en nuestro router.
- Analizar el firmware que nos ha dado el fabricante en busca de cosas interesantes...

ANÁLISIS DEL USERSPACE

- > ¿Cuál es el primer proceso que se ejecuta?
 - /sbin/init Normalmente apunta a busybox
- > ¿Que hace?
 - > /etc/inittab
 - > /etc/init.d/
 - > ...
- ¿Hay binarios interesantes?
- ¿Hay otras configuraciones interesantes?

- > Analizar el firmware!
 - > ¿Qué nos falta por conocer de este firmware?
 - > ¿Existe algún archivo interesante que debamos analizar?
 - > ¿Qué necesitamos para analizar esos ficheros?

- > Analizar el firmware!
 - Es interesante entender los scripts de arranque y servicios, pueden darnos funcionalidad interesante o vulnerabilidades!
 - El binario "important_secret_service" parece interesante
 - Para analizarlo necesitamos un poco de información de reversing de binarios!

